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Experimental and analytical results are presented for the self-excited oscillations that 
occur in a partially filled centrifuge when centrifugal forces interact with shallow-water 
waves. Periodic and aperiodic modulations of the basic whirl phenomena are both 
observed and calculated. The surface waves are found to be hydraulic jumps, undular 
bores or solitary waves. 

1. Introduction 
Miles & Troesch (1961) have studied surface waves in a rapidly rotating cylinder 

partially filled with liquid. Kollmann (1962) and Wolf (1968) have reported self-excited 
asynchronous whirl phenomena resulting from the interaction of the centrifugal forces 
induced by these waves with the mechanical supports of the system. Hendricks & 
Morton (1979) have performed a linear stability analysis for this configuration, thus 
identifying the parameter range where this instability occurs. The present work 
focuses on nonlinear effects which occur within this parameter range. Both experi- 
mental and analytical results are presented. 

A model for the phenomena consists of a hollow cylinder of radius R (see figure 1)  
on an axially symmetric support system consisting of linear springs and dampers. 
(The actual device is described in detail in $ 5 . )  The cylinder contains a relatively small 
amount of liquid, which, by virtue of large angular velocity w ,  is spun up into a thin 
layer along the cylinder wall. In its unperturbed state the layer is of uniform 
thickness, and the centre of rotation is a t  the centre of the cylinder. When the liquid 
layer is perturbed by surface waves the system becomes unbalanced. In  a certain 
parameter range both the amplitude of the waves and the displacement of the centre 
of rotation grow until a new equilibrium is reached in which the centre of rotation 
whirls about a fixed point with constant angular velocity 52 and constant displace- 
ment d.  Since 52 is not equal to w the phenomenon is called asynchronous whirl. 
(Synchronous whirl occurs when an unbalancing mass is fixed to the cylinder wall.) 

A physical explanation of this phenomenon is quite simple. The rotating layer of 
liquid feels a centrifugal force Rw2 per unit mass. This effective gravity allows 
shallow-water waves with propagation speed (Rw2ho)t to occur, where h, is the 
unperturbed thickness of the layer. Waves propagate with this speed relative to an 
observer fixed to the cylinder. Relative to such an observer, ‘off-centre’ unbalance 
or ‘ tidal ’ forces travel around the cylinder with speed (52 - w )  R. Resonance will occur 
when these speeds coincide, since a single surface wave will feel this ‘tidal ’ force 
continuously. The resonance condition is thus 

(52 - w)  R = & (Rw2ho)! 

or 52 = ~ [ l  - (h , /R): ] .  
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wR i 
FIQURE 1.  Sketch showing some nomenclature; A is the 

amplitude, w is the operating frequency. 

(The other sign is not observed.) The amplitude-response curve ( A  vs. w )  would be 
expected (and is observed) to  peak when 52 is near the natural frequency of the elastic 
support system. 

In addition to  the basic steady whirl described above, other phenomena are 
observed and reported here for the first time. I n  certain parameter ranges A is found 
to oscillate at a frequency that is small compared with f2, causing a slow modulation 
of the basic phenomena. In  other ranges the modulation is aperiodic. The waves that 
appear on the water surface are variously hydraulic jumps, undular bores or solitary 
waves. These can be seen in figures 2(a, b, c) ,  and are further described in $6. 

2. Basic equations 
The equations of motion of a thin fluid layer along the inside surface of a rotating 

cylinder, as seen from a coordinate system attached to the cylinder (see figure I ) ,  can 
be written approximately as 

au av -+- = 0, 
ax ay 

au au au 1 ap a Z u  
-+u-+v---2wv+8~P = ---+v- 
at ax ay p a x  a y 2 ’  

av 1 aP 
P a Y  at - + ~ u u + R w ’ = - - -  

(2.1) 

(2.3) 

Here, d(z) is the deflection of the centreline of the cylinder from its equilibrium 
position. The term d.8 appears as a body force in (2.2) because the coordinate frame 
is being accelerated. A corresponding term has been neglected in (2.3) because the 
layer is thin; the nonlinear and viscous terms have also been omitted. In  addition, 
v in this equation will be approximated by v = y(ah/at) /h,  in the layer, where h ( z ,  t)  
is the depth and h, the mean depth of the layer. These are standard approximations 
of shallow-water theory (see Whitham 1974). When (2.3) is integrated between y and 
h, where p = 0, one finds 

h ht -y2 a2h 
- + 2w u dy + Rw2(h - y). E - -  - 

p 2h, at2 !I 
(2.4) 
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(C) 

FIGURE 2. Waves on thin liquid layer: (a) undular bore; ( b )  hydraulic jump; (c) solitary wave. 
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Differentiating this with respect to x ,  using (2.1) and the surface boundary condition 
ahpt + uah/ax = v a t  y = h, and substituting into (2.2) gives 

These will be put in the form of depth-averaged equations used in hydraulics. By 
introducing 

h j: 
and using the surface boundary condition, the following equations may be derived : 

U = -  udy (2.7) 

ah ahU -+- = 0, 
at ax 

(Coriolis force) (dispersion term) (wall friction) (Reynolds stress) 
(2.9) 

In  these equations the wall-friction and Reynolds-stress terms must be approximated. 
The wall friction has been taken in a form proposed by Chester (1968), namely 

au aU(t-t’,x) dt’ 
at (t‘)t‘ (2.10) 

This form is appropriate for steady-state operation in which the motion in a thin 
viscous layer resembles that generated by an oscillating flat plate. 

The Reynolds-stress term has been approximated by using a spatially constant (but 
time-dependent) eddy viscosity : 

a i ho a au 
axho 0 ax ax g = -- -I (u - U)2dy = - vT- , 

2xR a 
vT = aha[&j, (a’dx]’.  

(2.11) 

(2.12) 

This term accounts for turbulence which develops in the observed hydraulic jumps. 
It becomes important only when the velocity gradient becomes large. Equation (2.12) 
is a modification of an eddy viscosity proposed by Whitham (1974). An alternative 
approach is to  neglect the structure of this hydraulic jump and treat it as a 
discontinuity as in $3. I n  $4 the system of equations is solved by expanding in a 
Fourier series. This requires a ‘realistically ’ thick hydraulic jump for convergence 
reasons. 

It is tempting to neglect the Coriolis-acceleration term. It is shown here that i t  is 
important. Consider the linearized equations 

au ah’ ah’ 
-+Rw2--2w-= 0, 
at ax at 

(2.13) 

(2.14) 
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where h = h, + h'. These equations have solutions in the form of the superposition of 
prograde (faster than the wall) and retrograde waves: 

F,(x - c+ t )  + F,(x - c- t) .  
The wave speeds are 

(2.15) 

(2.16) 

These are in agreement with the two-dimensional results of Miles & Troesch (1961) 
for shallow water. If the Coriolis acceleration were neglected these would become 

(2.17) 

where c, is the shallow-water wave speed (gh,):, with g replaced by the centrifugal 
acceleration Ro2. Clearly the Coriolis force would be negligible if ho/R were sufficiently 
small. However for ho/R = 0.1 one gets c+/co = 1.365, c-/co = -0.733, which is an 
appreciable effect. Larger values of ho/R are used in some of the experiments. 

The fluid motion is coupled to the elastic support system by the following combined 
momentum equation : 

d 
dt 

MJ+- (the momentum of the fluid) + 2Mw0 Cd + Mu: A = 0. (2.18) 

Here M is the mass per unit length of the support system, C a dimensionless damping 
coefficient and oo the natural frequency of the spring system. This may be written 

By representing the displacement vector d in the form 

d = id cosy+jd siny, 

(2.19) may be written as the pair 
(2.20) 

(M+m) (2 - d j 2 )  + 2Mw, CA + Mu; d 

+ j r R p h ( U + R o )  0 cos 

and 
(M+ m) ( 2 A j  + di;) + 2Mw0 C d j  

=-z[ d nR ph(U+Rw)cos 

+ j r R p h ( U + R w )  0 sin 

The above system of coupled equations may be greatly simplified in the case where 
the mass per unit length of the support system (M) is much greater than the mass 
per unit length of the fluid (m) ,  for in this case the magnitude of the unstable 
oscillations will be small. The mass parameter 

xpR2 
P U = M  (2.23) 

11 FLY 150 
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is introduced along with new variables defined by 
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" I  w 
U h' - = $7, - = pri, - = 6, 
CO h0 

(2.24) 

where SZ = 9 and co is the wave speed previously defined. In addition a new x-variable 
is defined by 

6 = x/R+wt--(t) (2.25) 
and a slow time by 

7 = pw(ho/R):  t .  (2.26) 

In the new variables the 'tidal ' driving term appears stationary with slowly varying 
magnitude. It is assumed that all the variables depend only on the slow time 7 and 
not additionally on a fast time wt. This means that the motion is nearly synchronized 
to the driving wave with time variations which are slow compared to the turnaround 
period of the cylinder. 

With the above change of variables the equations may be written 

ari a0 (;y (1 -")g+ar; = pG,, 

a0 ari ari 
ac 

(;y (1 - 6) y+ - 2( 1 - 6) - = pG,, 

where 

(2.27) 

(2.28) 

(2.29) 

and 
a0 a0 h G = --- 0-+ p2"d"-db2 (2d '0+0 ' )  cosc a7 ag ( R  

where the prime refers to differentiation with respect to the slow time. Now expand 
in a power series in p, 

(2.31) I u = uo+pul+ ..., ri = H+puK,+ ... ) d = d0+pd1+ ..., 
6 = Q+pa,+..., G, = Glo+pG,,+ ..., G, = G,o+pG,,+ ..., 

and assume that the factor h i / p R 2  in the dispersion term is O(1) for purposes of 
expansion. The lowest terms in the expansion give 

(2.32) 

(2.33) 

These can only have a solution if 

(2.34) 
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With the plus sign this gives 
C 

Oo=l+', 
UR 

(2.35) 

that is, ROO = uR+c-.  (2.36) 

Thus to lowest order the whirl speed is synchronized with retrograde water waves 
relative to the cylinder surface velocity. The other sign would lead to prograde waves. 
This choice is rejected as non-physical. With the above choice for do, either of the 
equations give 

Do = L H .  (2.37) 
CO 

The next term in the expansion gives 

(2.38) 

(2.39) 

A necessary condition for these to have a solution is for the right-hand sides to be 
equal : 

(2.40) 

An additional condition is required because the solution must be periodic. This 
requires that the average of the right-hand sides must be zero. This condition is 
satisfied if 

J r fdg  = 0. 

The expression for! given by (2.10) or (2.42) satisfies this condition. 

de Vries equation for H results, namely 
When Do from (2.37) is substituted into (2.40) a modified, driven, Korteweg- 

- 252, [1. (97 2 

Here 7, = T 1, A , =  , B,=3(?) ,  

R , szo=l+- .  C -  

OR 

The wall-friction term f may be expressed as 

(2.41) 

(2.42) 

11-2 
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and the Reynolds-stress term # as 
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The same expansion applied to the rotor equations reduces them 

and 

(2.43) 

to 

(2.44) 

(2.45) 

It is desired to solve (2.41) for H ( ~ , T ~ )  with period 271 and zero average. This 
equation contains two unknown functions, J0(7,) and A,(T,), which must be 
determined by using the two constraining equations (2.44) and (2.45). 

3. The hydraulic-jump approximation 
I n  this section a simplified nonlinear analysis is carried out. It is assumed that the 

oscillations are steady. The dispersion term and the wall-friction term are neglected 
as is the Reynolds-stress term. A solution is sought which may have a discontinuity 
in depth (a hydraulic jump). Equation (2.41) then reduces to  

which may be integrated to  

A , H - ~ B l H 2 = - Q ~ d o ~ ~ ~ 6 + A ,  (3.2) 

where A is a constant of integration. When solved for H this gives two solutions: 

These are sketched in figure 3(a). A hydraulic jump may be represented by a jump 
from the lower branch to the upper branch. However, since H must be periodic, this 
requires that  the two branches touch at 6 = +n. This may be accomplished by 
choosing the constant A so that  

(Al/B,)2 = 2(A+fiEd0)/B,. (3.4) 

Then H is given by (3.5) 

This is sketched in figure 3 ( b )  along with a possible jump a t  g = S. 
The solution is therefore given by (3.5) with three unknown parameters, A,, do and 

the unknown jump location S.  I n  addition to the two integral constraints given by 
(2.44) and (2.45), a third constraint is provided by conservation of mass: 

H d c = O .  L 



Asynchronous whirl in a rotating partially Jilled cylinder 319 

H 

I 

-7r 0 5 7r 

I I 1 

-7r S 0 b 
(6) 

FIGURE 3. Depth variation in hydraulic-jump approximation : (a) two 
possible solutions; ( b )  limiting case with jump at 8. 

This may be regarded as determining the constant A, ,  while the other two determine 
2, and S. The integrations in (2.44) and (2.45) may be carried out with the results 

An equation for S alone is obtained by dividing out 2'9, giving 

2wyw2 - 0 2  2[sin $5'- $ sin3 is] 
O = -3(2)! 

(wo/w) 6 0  c (1 + cos S)t . 

(3.8) 

(3.9) 

The jump position versus w/wo may be determined from the inverse function, 
specifying S and determining w/wo.  Then with S known 2, may be found from (3.7) 
or (3.8). 

Results are plotted in figure 4 as A,/h, versus w/wo for one particular set of 
centrifuge parameters, ho/R  = 0.14 and C = 0.18. The peak in this curve is fairly 
sensitive to the value of the damping, as with most amplitude-response curves. A 10 yo 
change in the damping has about a 20 yo effect on the peak amplitude, while hardly 
changing the tails of this curve. It will be observed that this result is in remarkably 
good agreement with the more exact theory and the experiments, considering the 
simple nature of the theory. 
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FIGURE 4. Amplitude versus operating frequency for h,/R = 0.14, C = 0.18, p = 0.032: -.-.-. , 
hydraulic jump approximation; -, modified Korteweg-de Vries equation, El = 0.0015; ----, 
modified Korteweg-de Vries equation, El = 0; D , experimental, periodic modulation; 4 , experi- 
mental, aperiodic modulation ; A, experimental, steady whirl. 

4. Numerical solution of the inhomogeneous Korteweg-de Vries equation 
The equations derived in $2 have been expressed as a system of ordinary 

differential equations by expanding in a Fourier series and truncating a t  a finite 
number of terms. The resulting equations for the time-dependent Fourier coefficients 
have been solved numerically as an initial-value problem. By introducing 

00 

H = C Zn(~l)einc,  Z - ,  = 2; 
n --cn 

the equations may be written, for n = 1 ,  2, 3, ... , 

dZ 12- - - inA, 2, - in3C1 2, - (1 + i) Dl(+n): n&, - El n22, -+i@ do a,, 
d71 

where a,, is the Kronecker delta. The two integral constraints, (2.44) and (2.45), may 
be combined into a single complex expression, 

which is needed to determine A ,  and do. By noting that this implies 

Im (GZ,)  = 0 (4.4) 

with (4.5) 
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the parameter A ,  may be determined from the first of (4.2), the n = 1 equation, by 
multiplying i t  by G and taking the imaginary part. This gives 

Im (iG) 
A, = - C, - B,(@)i + B,  (4.6) Im (iGZ,) 

Since d, may be found from 

all the terms on the right-hand side of (4.2) are known in terms of the 2,. It should 
be noted, in this regard, that  

The resulting equations have been truncated at 20 terms and solved numerically 
by using a fourth-order RungeKut ta  algorithm in complex form. There are some 
complications, however. The terms - in3C, Z ,  and -El n2Z, become large when n 
is large and cause numerical instability unless the time step is very small. The system 
of equations is 'stiff'. The difficulty can be eliminated by a change of variables. If 
the equations are written 

2- - ( - in3C, - n2E,) 2, + F, 
dZ 

d71 
the use of an integrating factor results in 

with 

d 

d71 
-2, I, = I, F,, 

I, = exp ( - in3C, 71 - n2 s,' E1(7i) d7;) . 

(4.9) 

(4.10) 

(4.11) 

When a new variable Y, = z, I, (4.12) 

is introduced, the new system is not stiff. Convergence is adequate with AT, = 0.01, 
compared with A7, = 

Computations have been carried out for an extended range of operating frequencies 
with parameters that  correspond to a load of 175 cm3 of water. The parameters used 
were 

required before the transformation. 

h 
-9 = 0.14, (s)' = 0.0015, C = 0.18, 
R (4.13) 

p = 0.032, a = 0.2. 

The computations were carried out for 24 time units starting from an initial state 
in which only the n = 1 coefficients were excited, with the constraint given by (4.4) 
satisfied. Usually Im Z ,  = -0.1 was used. The results are presented as the amplitude 
of the rotor oscillation Ao/ho versus the operating frequency w / w o  in figure 4. For some 
values of the operating frequency the amplitude rapidly settles down (usually 6 time 
units) to steady-state oscillation. For a large range of operating frequencies the device 
does not oscillate at a single frequency but shows modulation of the normal 
high-frequency oscillations by a slow breathing phenomenon. In  the figure this is 
indicated by showing a maximum and a minimum amplitude. The frequency of the 
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- 
FIGURE 5. Schematic of centrifuge. 

slow modulation is of order 1, showing that the scaling used in the equations is correct. 
No aperiodicities were observed in these computations. However, at a larger external 
damping, with C = 0.3, clear aperiodic phenomena were seen. This will be discussed 
later. 

5. Description of the experiments 
The equipment is shown schematically in figure 5. The centrifuge consists of a 

thick-walled lucite cylinder with O-ring-sealed top and bottom lucite flange plates. 
The top-plate has a central hole for adding or removing fluid from the centrifuge. 
The centrifuge bowl is 6 cm in height and has an  inner radius of 6 cm. The bowl is 
kept short to  minimize thickness variation in the spun-up liquid layer. The centrifuge 
is mounted on an aluminium plate, which, with the use of two sets of linear bearings, 
is free to move in two mutually perpendicular directions. I ts  motion in these 
directions is resisted by two adjustable double-cantilever steel springs and is damped 
by two attached hypodermic syringes filled with silicone oil and connected through 
variable-length tubing to oil reservoirs. 

When the centrifuge is in pure rotation about its geometric axis the aluminium 
plate is stationary. Any motion of the centrifuge from its equilibrium centred position 
causes motion of the mounting plate and of the motor driving the bowl. The 
mechanical ground for the system is a steel plate (about 5 cm thick) mounted firmly 
to a concrete pier which is part of the building foundation. This eliminates any 
interaction between the rotating, vibrating system and the surroundings. 

The overall design of the equipment is such that the spring constants and damping 
factors for the two degrees of freedom can be matched closely. I n  addition, a brass 
plate, provided with its own set of linear bearings, is built into the system in such 
a way as to assure that the mass is the same for motion in each of the two directions. 
The total mass of the vibrating system is about 20 kg. The effective length of the 
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cantilever springs is variable so that the natural frequency of the system can be 
changed. These were adjusted so that it was 1100-1200 r.p.m. in most of the 
experiments. By changing the length of the damper tubing, or the viscosity of the 
oil in the dampers, the damping coefficient can be varied from about 0.12 to 0.30. 

The centrifuge is driven by an Electrocraft feedback-controlled motor which can 
drive the loaded bowl to about 3000 r.p.m. and can maintain the speed to about 
+ 1  r.p.m. 

The lower flange cover of the bowl is held to the bowl flange by six steel bolts. A 
Bentley proximity probe mounted at  a suitable distance from these bolts senses their 
passage and trasnsmits 6 pulses per bowl revolution to a counter, which in turn 
displays the bowl speed when gated for known intervals. If the gate time is 10 s the 
counter displays the bowl speed in r.p.m. 

Motion of the system in the two independent directions is sensed by Kaman 
proximity probes, which have been calibrated in place and have a sensitivity of about 
80 mV/mm and a frequency response from zero to about 20 kHz. The outputs of the 
Kamen probes are fed to an oscilloscope and to a Hewlett-Packard Model 35028 
dual-channel spectrum analyser . This instrument continuously samples a controllable 
time segment of the signal from the Kamen probes, performs a fast-Fourier-transform 
analysis and displays the spectrum of the incoming signal. Either r.m.s.-averaged or 
peak-averaged amplitudes are displayed as a function of frequency. The spectrum 
analyser communicates with an HP-85 digital computer which controls the analyser 
operation and receives the spectral data which is stored on magnetic tape for further 
analysis. 

The following is an outline of the procedure used in a typical whirl experiment. 
1. The empty centrifuge is unbalanced by attaching a 5 g weight to one of the six 

screws in the bottom flange. This unbalance produces a synchronous runout. Suitable 
measurements of the amplitude and phase of this runout provide the data for 
determining the resonant frequency and damping coefficient associated with the two 
degrees of freedom of the system. The unbalance weight is removed. 

2. The centrifuge is loaded with the desired amount of working fluid whose 
viscosity and density have been determined. Temperature is measured before and 
after each whirl run and the fluid properties are taken to be those at the average 
temperature. Usually the temperature changes by less than about 1 "C during a run. 

3. The centrifuge is spun up to the desired speeds and the whirl amplitudes are 
obtained from the computer, which interrogates the spectrum analyser. The operating 
speed at which each whirl amplitude is measured is obtained from the digital counter 
mentioned previously. 

4. When the desired range of operating speeds has been covered, and whirl 
measurements made with both increasing and decreasing operating speed, the run is 
complete. 

5. Measurements of the resonant frequencies and the damping coefficients are 
repeated. 

Visualization of the free surface of the spun-up liquid film is achieved by the 
addition of a small amount of dye to the fluid and the use of stroboscopic lighting 
triggered by the Kamen probes which are responding to the whirl. Photographs of 
the free surface are obtained by synchronized flash photography using a precision 
Wista view camera. 

In some cases, the Kamen probe output was fed, after suitable known amplification, 
to a Hewlett-Packard hot-stylus recorder. This provided a hard-copy record of the 
time dependence of whirl amplitude. 
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( d )  

FIGURE 6. For caption see opposite. 
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FIQURE 6. Various kinds of whirl phenomena seen as displacement versus time. Horizontal marks 
indicate time duration of 100 cycles at the operating frequency. Vertical marks indicate displacement 
of O.lh,. (a) steady whirl, h,/R = 0.14, w/wo = 1.6, C = 0.28; (6) periodic modulation, 0.14, 1.6, 
0.17; (c) periodic modulation, 0.14,1.73,0.28; (d )  periodic modulation, 0.14,1.63,0.28; (e) aperiodic 
modulation, 0.14, 1.53, 0.28 ; (f) aperiodic modulation, computation from modified Korteweg-de 
Vries equation (El  = 0), 0.14, 1.5, 0.30; (9)  periodic modulation, computation from modified 
Korteweg-de Vries equation (El  = 0), 0.14, 1.6, 0.18. 
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6. Results 
Observation of the behaviour of the system during a whirl run discloses many 

interesting phenomena. A t  operating speeds below some critical value there is no 
evidence of any motion other than the rotation of the centrifuge about its geometric 
axis. After this lower critical speed is passed, the system begins to whirl at a frequency 
other than the operating frequency. Further increase in operating speed leads to an 
increase in whirl amplitude, until at some operating speed the whirl amplitude reaches 
a maximum. Subsequent increases in operating speed result in a decrease in whirl 
amplitude, until finally the whirl disappears at an upper critical frequency and the 
bowl is again rotating about its geometric axis. The lower and upper critical 
frequencies define a region of operating frequencies in which the system is said to be 
unstable. The extent of the unstable region depends on the fluid load, fluid density 
and viscosity, external damping and resonant frequency. A report of the complete 
experimental study of the linear stability region will appear elsewhere. Here attention 
will be focused on some of the more interesting observations made during active 
fmite-amplitude whirling motion. 

Observation of the free surface during finite-amplitude whirl disclosed several 
phenomena which appear at different operating frequencies for a given fluid load, 
damping, and resonant frequency. Figure 2 (a) is a photograph which clearly shows 
a ‘hydraulic jump’ across which the fluid depth changes suddenly from one value 
to another. Figure 2 (b) illustrates a weaker hydraulic jump with undulations behind 
it. Figure 2(c) shows what appears to be a ‘solitary’ wave on the fluid surface. 
Numerically produced surface shapes have been computed and are in very good 
agreement with these observations. These will be presented in a separate publication. 

Active whirl of three different types has been observed : 
(i) steady whirl, i.e. whirl with essentially time-independent amplitude; 
(ii) periodic time-dependent whirl during which the whirl amplitude varies in a 

reasonably periodic fashion, slowly modulating the high-frequency whirl oscillations ; 
(iii) aperiodic time-dependent whirl during which modulations occur that are 

clearly not periodic. 
These features are illustrated by the traces obtained from the hot-stylus recorder 

of the whirl signal from one of the Kamen probes. Operating conditions are given 
for each figure. Steady whirl is exemplified by figure 6 ( a ) ,  whirl with periodic 
amplitude modulation is illustrated by figures 6 (W). Finally a clear example of whirl 
with aperiodic amplitude modulation is shown in figure 6 ( e ) .  Figures 6(f, g )  show 
similar results from the numerical computation. Figure 6 (f) in particular shows 
aperiodic behaviour similar to that in figure 6 ( e ) .  These are both at the same operating 
conditions. 

Results showing amplitude response are collected in figure 4. This shows amplitude 
versus operating frequency (d,/h,  versus w / w o )  a t  one set of operating parameters 
(h,/R = 0.14, ( v / w , R ~ ) ~  = 0.0015, c = 0.18, p = 0.032). On this figure are shown the 
hydraulic jump calculation from 3, the results from the modified Korteweg-de Vries 
calculations from $4, and a set of experimental amplitudes taken from the hot stylus 
recorder. The experimental results are shown as a maximum and a minimum runout 
when the whirl is not steady. Different symbols are used to distinguish between 
periodic and aperiodic modulations. It will be observed that there is a noticeable lack 
of agreement between the theories and the experiment especially near the peak 
amplitude but that the qualitative agreement is good. The Kortewegde Vries 
calculation shows a region of modulation to the right of the peak, as does the 
experiment, but does not have such a region on the left. 
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